An Operator Derivation of the Path Decomposition Expansion

نویسنده

  • J. J. Halliwell
چکیده

The path decomposition expansion is a path integral technique for decomposing sums over paths in configuration space into sums over paths in different spatial regions. It leads to a decomposition of the configuration space propagator across arbitrary surfaces in configuration space. It may be used, for example, in calculations of the distribution of first crossing times. The original proof relied heavily on the position representation and in particular on the properties of path integrals. In this paper, an elementary proof of the path decomposition expansion is given using projection operators. This leads to a version of the path decomposition expansion more general than the configuration space form previously given. The path decomposition expansion in momentum space is given as an example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the superstability of a special derivation

The aim of this paper is to show that under some mild conditions a functional equation of multiplicative $(alpha,beta)$-derivation is superstable on standard operator algebras. Furthermore, we prove that this generalized derivation can be a continuous and an inner $(alpha,beta)$-derivation.

متن کامل

Accelerating the Composite Power System Planning by Benders Decomposition

This paper presents an application of Benders decomposition to deal with the complexities in the simultaneous Generation Expansion Planning (GEP) and Transmission Expansion Planning (TEP). Unlike the power system operation fields of study, the power system planning methods are not expected to be fast. However, it is always preferable to speed up computations to provide more analysis options for...

متن کامل

il Path integral approach to the quantum fidelity amplitude

The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a ser...

متن کامل

Lie-type higher derivations on operator algebras

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

متن کامل

Path integral approach to the quantum fidelity amplitude

The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a ser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995